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There exist two approaches to the determination of the turbulent boundary-layer charac- 
teristics, integral and differential (finite-difference methods). The former approach is re- 
lated to utilization of integral relations when the boundary-layer equations are satisfied 
only in the mean in its thickness, and permit the computation of just the integral character- 
istics such as the friction coefficient, the thickness of the loss of momentum, etc. Examples 
of using integral methods for boundary-layer analysis on rough surfaces can be found in [i, 
2], for example. 

Differential methods that contain direct assumptions about the Reynolds stresses at a 
point and are associated with the solution of the fundamental partial differential equations 
of the conservation laws, permit more enhanced information to be obtained. Differential 
methods are separated in [3] into models closed by using the mean velocity field, and models 
in which the field of average turbulence characteristics are used. In the former case suffi- 
ciently simple models based on the turbulent viscosity (or the mixing path) concept [4] are 
used to obtain the magnitudes of the turbulent tangential stresses and the mean velocity 
field, and successfully in many cases. 

In this paper a turbulent viscosity model is proposed for the analysis of a two-dimen- 
sional incompressible boundary layer with a pressure gradient on a permeable rough surface. 

I. In formulating problems by using turbulent viscosity, the representation of a two- 
layer boundary layer with different viscosity variation laws in the inner (near-wall) and 
outer regions is ordinarily used. It is known (see [5], for example) that the large-scale 
motion responsible for the characteristics of the external zone depends weakly on the wall 
state. Consequently, it is natural to use methods developed for the analysis of the boundary 
layer on a smooth surface [3, 4] in the outer domain. In this paper, the mixing path model 

i " ~t l+ 2 ~ u+ = u__ y+ -- Pu*g l+ = pu,z, (i. I) 

was used in performing the computations, where y is the coordinate normal to the surface; u, 
longitudinal velocity component; 0, density; ~ and ~t, the molecular and turbulent viscosi- 
ties; u, = (Tw/p) I/2, dynamical velocity; T, shear stress; and the subscript w denotes param- 
eters at the wall. The mixing path length I in the external domain is assumed proportional 
to the boundary-layer thickness Z = 0.096. 

As is known, the possibility of utilizing a local representation of the effects of turb- 
ulent exchange in the external domain by using (i.i) is limited to the case of almost "equilib- 
rium'! flows. In analyzing "strongly nonequilibrium" flows, preference should be for models 
of average turbulence characteristics transfer [3]. In contrast to the external domain, the 
fine-scale turbulence of the near-wall zone possesses a "short memory" since perturbation 
damping occurs here at short ranges. This circumstance permits successful utilization of the 
local approach conception near the wall and obtaining an algebraic expression for the turbu- 
lent viscosity. Let us note that because of its local nature it can also be utilized as a 
boundary condition for the equations of turbulent characteristics transport in the analysis 
of "strongly nonequilibrium" flows. 

We use the equation of motion which has the following form: 

( ~Lt] du+ T+ "c I + p+g+ + v+u +, p+= ~3 dp v + vvJ d--~' w : V '  (1.2) t + "-6-J ~ = ~+~ - -  ~-L- = . ~ �9 
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near the wall where convection in the flow direction can be neglected, where p is the pressure 
and v is the transverse velocity component. Experimental results obtained for smooth and 
rough surfaces (see [5], for instance) show that the relationship (1.2) for ~+ is satisfied 
with a high degree of accuracy for the whole internal layer. In that case, the correct ex- 
pression for ~t should result in agreement between the velocity profile obtained upon integra- 
tion of (1.2) and the profile obtained on the basis of test data. For instance, when i + 
V+w u+ >> p§ the velocity distribution at sufficient remoteness from the wall roughness 
can be represented in the form [2, 6] 

2 t + v ~ u + - - t ) = ~ l n y + + B - - ~  (k +,~1,~2 . . . .  ). ( 1 . 3 )  

On an impermeable surface V+w = 0 and the left side of (1.3) equals u +. Here ~ is the 
Karman turbulence parameter, k is the height of the roughness elements (k + = pu,k/~), and B 
is the parameter governing the location of the logarithmic section of the profile on a smooth 
wall, r +, ~i, ~=, ...) is the dynamical roughness function representing a shift in the vel- 
ocity profile because of the influence of roughness, ~I, 02, ... are parameters characteriz- 
ing the shape of the roughness elements and their distribution over the surface. An approxi- 
mation of the experimental data obtained by Nikuradze for sandy roughness is shown by the 
solid curve in Fig. 1. For certain other modes of homogeneous roughness, the set of param- 
eters ~i, ~2, ... is successfully reduced in its developed streamline regime [when the depen- 
dence ~(k +, oi, ~2, ...) = in (k+)/~ + R(oI, ~2, ...) is correct] to a single distribution 
density parameter for the elements on the surface X and a single correlation dependence 
R(X) is obtained. Let us note an important property of roughness function: Its value in 
the developed regime is explicitly independent of the mass transfer on the surface, the pres- 
sure gradient, the transverse surface curvature, etc. [2, 6]. 

In [7], devoted to the investigation of the flow in the inner domain, utilization of 
(i.i) is proposed for the turbulent viscosity in this zone, where the mixing path distribu- 
tion is given in the form 

l+ ~ •  - -  exp (--y+/A +) @ exp ~,~60y+/A +k+) ], ( 1 . 4 )  

where A + is the velocity fluctuation damping parameter near the wall. On a hydraulically 
smooth surface k+ + 0 and the second exponential term is negligible. Utilization of (1.4) 
for a smooth surface (see [4], for example) is in good agreement with known experimental data. 
However, a numerical analysis of the velocity profiles on a rough surface, executed by using 
this representation, will yield an unsatisfactory correspondence between the computation 
(points i in Fig. i) and the experimental dependence ~(k~). 

Utilization of the formula obtained in [8] to this same end improves this correspondence 
substantially (points 2) but even here a tendency to deviation is observed as k + grows. More- 
over, the applicability of the expression from [8] is limited to the case of roughness that 
can be reduced to equivalent sandy roughness which is, as a rule, impossible for the transi- 
tion mode of the flow around its elements. 

Let us obtain an expression for turbulent viscosity by comparing the experimentally 
established velocity profile to the result of integrating (1.2). We note first that the dis- 
tribution ~t will be given by the formula ~t/~ = ~y+~-~ at sufficient remoteness from the 
smooth wall. We take account of additional vortex formation caused by the roughness elements 
in an additive manner 
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~ I ~  = (• + / ( k + ,  ~ ,  o~ . . . .  ))V'V-. ( 1 . 5 )  

An analogous approach to modeling ~t was used in [9], where gradient-free flow around 
an impermeable plate was considered. In the general case of the combined action of mass 
transfer and a pressure gradient, the variables in (1.2) do not separate; consequently, we 
examine their influence separately. For instance, let i + V+wU + >> p+y+. Then, by substi- 
tuting (1.5) into (1.2) and noting that a relationship i + (~y+ + f)/T + = (i + ~y+ + f) T~ -~ 
is valid over the whole thickness of the near-wall domain, we will have, after integration, 

v - ~ ( V I T u w + e + _ _ t )  ___i In iq-xY+~,- /  ( 1 . 6 )  
w i i n i q - !  * 

Comparing (1.3) and (1.6) in the domain of validity of the logarithmic velocity dis- 
tribution (where ~r >> i + f), we obtain the desired expression for the term modeling the 
vortex formation on a rough surface 

/ (k+,Gl ,  G 2 , . . ) =  e x p [ ~ [ B _ r  O2 . . . .  )]} I. ( 1 . 7 )  

Performing analogous reasoning for a boundary layer with a pressure gradient without 
mass transfer (v w = 0), we can obtain that additional vortex formation is given by the very 
same dependence in this case. It is then natural to assume that (1.7) is also valid in the 
general case of the combined influence of mass transfer of a pressure gradient. The satis- 
factory agreement between the results of a computation presented in Sec. 3 and experimental 
data confirms the legitimacy of this assumption. 

By using (1.7), the value of the boundary of the developed roughness regime k+r that is 
important for practical applications can be obtained. Indeed, the complete degeneration of 
the viscous sublayer and its associated effects of the appearance of molecular transfer cor- 
responds to the time of the onset of the developed roughness regime. The same situation is 
felt at sufficiently long ranges from a smooth wall where ~t/~ = ~y+/~F. Hence, it is clear 
that f = 0 at the boundary of the developed roughness regime, and 

k~ (ol, g~; . , , )  = exp {• [B - -  ~ (o~, o 2 . . . .  )]}/•176 ( 1 . 8 )  

The expression obtained from k+ r is in good agreement with the known Nikuradze experi- 
mental data for sandy roughness and the Hamm data for baffles (data are presented in [I]). 
For smaller values k + < k+ r (transition roughness regime) we have f < 0, whereupon the re- 
sidual damping influence of the viscosity is taken into account. 

Let us note that the velocity distribution obtained by using (1.5) and (1.7) (the points 
3 in Fig. i) is in good agreement with the corresponding experimental Nikuradze results. 

2. In order to verify the validity of the proposed turbulent viscosity model, the re- 
sults of a finite-difference computation of turbulent boundary-layer characteristics were 
compared with a number of known experimental data. Taken as the basis of the calculational 
algorithm was the Patankar--Spalding procedure [4] developed to analyze the boundary layers on 
a smooth wall. Changes needed to take account of roughness related to the flow zone adjoin- 
ing the wall were the following. The equations describing the flow in this zone have the fol- 
lowing form in the uniform boundary-layer approximation: 

d~ ~u + d~ + T + (2.1) 
dy+ %--r ~y+=l+~l~' 

where ~t/~ is computed by using (I.i) and (1.4) in the case of a smooth surface (when k+§ 0) 
and (1.5) and (1.7) in the case of a rough wall; ~ = (~ -- ~w)/($e -- Ow) is a dimensionless 
stream function used in [4] as a coordinate normal to the surface, and e is the subscript for 
the external boundary-layer boundary. 

The system of ordinary differential equations (2.1) for the abutting zone was solved by 
the Runge--Kutta method in combination with finite-difference equations approximating the con- 
servation equation in the remaining portion of the boundary layer. The solutions were merged 
in the middle of the ~ interval closest to the wall. The values of the coordinate Y+i and 
the velocity u+i corresponding to this point mi, were determined during integration of sys- 
tem (2.1). 

The difference equations for mi < m < i were solved by the factorization method across 
the boundary layer [4]. The turbulent viscosity distribution needed to evaluate the factori- 
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zation coefficients was computed by the formulas presented in Sec. i, and in conformity with 
the two-layer boundary-layer scheme assumed. 

In addition to the boundary conditions on the wall and the external boundary-layer bound- 
ary, the profiles of all the variables in the initial section must be known in order to solve 
the system of boundary-layer equations of parabolic type. However, only integral character- 
istics are presented in the initial section in the majority of cases: the friction coeffi- 
cient cf and the thickness of the loss of momentum 0. In such cases, the velocity profile 
given by the formula 

v--~w(]//l+ v~u+--l)----]nt@t@/xg+ @ I +  g H, . (2 .2)  

was taken as the initial profile. 

In contrast to (1.6), which is valid in the near-wall domain, the wake function g(H, y/6) 
representing the deviation of the velocity profile in the external boundary-layer domain 
from the logarithmic law is appended here. It is shown in [i0] that the wake parameter K and 
the wake function are explicitly independent of the mass transfer on a streamlined surface; 
the conservativity of the wake function relative to the surface roughness is proved in [6]. 
A convenient and sufficiently exact expression for g(H, y/6), assuring a good description of 
the velocity profile in a broad range of pressure gradients and Reynolds numbers, is proposed 
in [ii] : 

g(H, y/5) = (1 @ 6H)(y/5)2 -- (i @ 4H)(g/~) ~. (2 .3)  

Using (2.2) and (2.3), we obtain relations to determine the parameter ~ and the boundary- 
layer thickness ~ for given values of U+e = (2/%) I/2 and O: 

) c, ) o + ji ), ( 2 . 4 )  

,,+, +~/2 l] l n ( i  + + )  +2H.  : •  + . . . .  , - = 

Here 

= 

11  = 

1 2 =  

I s = 

f 4  = 

vw/ue, e = (i + I)/• 

• q- 0.9i7 --  E 1 ~- e), 
u-~[i,486II 2 q- (3.043 --  4E 1 -~- 5,33e)II + 1,9i2 + E2 

u-~[i.229II a + (4.048 --  6E I + 9.13e)II 2 + (5,37 + 3E 2 + 2.i7e], 

+ 8,23s)H + 2.943 --  E j 2  + 3,26s], 

u-4[i.068II 4 + (4.937 --  8E 1 + i3,23e)II a + (i0,2i6 + 6E2 + 
@ i9.ie)II 2 + (ii.484 --2E~ + 15.46e)H + 5,952 + Ed4 + 6.38e], 

The parameters E i (i = i, ..., 4) are evaluated from the recursion formula E i = 
--~(In e) i -- iEi-1, where Eo = --e. A formula similar to (2.4) was obtained in [i0] for the 
flow around a smooth surface (when e, E i § 0). However, the coefficient I/4 is erroneously 
committed there in front of the last term in the right side of the expression for e/6. 

The usual conditions at the wall and the external boundary-layer boundary were utilized 
as boundary conditions 

y = 0 ,  u = 0 ,  v = v w ;  y = 5 ,  u=ue@).  

As already noted in Sec. i, the expression r = (In k+)/~ + R is valid for the roughness 
function in the developed regime (k+ ~ k+r). The correlation dependence R(1) can be found in 
[i] for certain roughness element shapes; in a number of other cases the value of the equiv- 
alent sandy roughness is known for which R = --3 [12]. In the transition roughness regime 
(k+s < k + < k+r) the following approximate formula is sufficiently exact: 

.... ( i-J-_ ~ (~2 Ink~Ink+ Ink~lnk~/' 

where k+s is the boundary of the hydraulically smooth streamline regime (for the Nikuradze 
sandy roughness k+s = 5). It should be expected that the value of k+s would increase as the 
degree of homogeneity of the roughness elements increases. 
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3. The results of a computation were compared with classical experimental data obtained 
by Dhavan, Shultz-Grunow, and Kampff on a smooth plate in a broad range of Reynolds numbers 
Rex = 105-109 (data presented in [13]) in order to verify the algorithm. For the computation 
the values of the turbulence parameters were selected equal to ~ = 0.41 and A + = 26. The 
computational mesh was constructed in such a manner that the value of the coordinate Y§ in 
the middle of the m interval closest to the wall would not emerge outside the boundary of the 
range Y+i = 2-5. The agreement turned out to be quite good (the deviation for cf did not ex- 
ceed • consequently, the values mentioned were used in all the subsequent boundary-layer 
computations on a rough surface. 

The exception was the value of the parameter ~ in the gradient flow computation. It 
turns out that utilization of the same value ~ = 0.41, as in gradient-free flows, results in 
a systematic exaggeration of the friction coefficient cf, as compared with the experimental 
data, for flow with negative pressure gradient and a reduction in cf for flows with positive 
pressure gradient. Results obtained in [14] by processing velocity profiles measured on 
smooth surfaces in a number of papers also yield a deduction about the dependence of the param- 
eter K on the longitudinal pressure gradient. On the basis of experimental data presented at 
the Stanford conference (1968), the following dependence is proposed in [15]: 

• = 0.4i  • 0A82[1 - -  exp (--0,32~)1, ~ = - - 0 . 5 - - 5 ,  ( 3 . 1 )  

w h e r e  B = 8* /  w - d p / d x  i s  t h e  C l a u s e r  e q u i l i b r i u m  p a r a m e t e r  and  8"  i s  t h e  d i s p l a c e m e n t  t h i c k -  
n e s s .  According to [15], such a correction permits a substantial rise in the accuracy of de- 
termining cf for equilibrium boundary layers (by 30-40% for 8 = 5). Because of the above, 
the value of < was computed by using (3.1), where 6 was evaluated for the appropriate state 
of the surface. In the case of nonequilibrium flows, taking account of the prehistory of the 
pressure gradient was performed by using a simple relaxation model to compute the effective 
value of B [16]. 

By using the turbulent viscosity model developed above, satisfactory agreement was ob- 
tained between the results of a computation and all the experimental data for impermeable sur- 
faces available in [i, 8]. Let us present two typical graphs. 

Represented in Fig. 2 is a comparison with results of measuring cf, e, and 6* (points 
1-3, respectively) in a boundary layer (u~ = 34.45 m/sec) on a surface covered by two-dimen- 
sional roughness elements: Square elements with side k = 3.175 mm were arranged across the 
flow with a period (density) h = 4 [6]. The dashed line here represents results of computing 
the friction coefficient cf obtained for K = 0.41. As should have been expected, the influ- 
ence of a change in < on the integral thicknesses e and 6" turned out to be weak; consequent- 
ly, here and below only results are presented for their computation that correspond to the 
value~(6) calculated according to (3.1). 

Scottron and Power (see [I]) investigated the influence of the pressure gradient on the 
boundary-layer characteristics near a rough surface formed by using a mesh of square cells 
(k = 5.34 mm, h = 3.7, u~ = 29.9 m/sec). Represented in Fig. 3 is a comparison with a com- 
putation for the case of the strongest unfavorable pressure gradient. As before, points 1-3 
denote cf, 6, 6* and the dashes a computation of cf with ~ = 0.41. Compared with the remain- 
ing cases, the agreement here turns out to be not so satisfactory. This can be explained 
both by the pressure gradient being close to the separation value, and by the three-dimension- 
al nature of the flow near the wall. Both these reasons impose constraints on the possibility 
of utilizing the two'dimensional boundary-layer model. 
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Before presenting the comparison for permeable surfaces, let us make two remarks rela- 
tive to the combined influence of mass transfer and the pressure gradient on the parameters 
used in the computation. The former concerns the parameter B in the near-wall velocity pro- 
file (1.3). The influence of blowing on the quantity B in a gradient-free flow is investi- 
gated in [17]. Taking into account that the pressure gradient has no influence on B in prac- 
tice, this dependence can be written in the form 

2(V  + 
+ 

It is interesting to note that an increase in the blowing parameter v w will result in 
a diminution of B and a diminution of k§ in conformity with (1.8). This deduction about the 
broadening the zone of the developed roughness regime is in agreement with the experimental 
observations [5] about the appearance of additional properties inherent to the flow around a 
rough surface, on a wall with blowing. According to [5], the appearance of these properties 
is associated with the formation of a decelerating flux of the pressure field around each jet 
blown in from the surface. 

The second remark concerns the utilization of (3.1). It is proved experimentally that 
(see [5], for example) the mass transfer on the surface does not influence the magnitude of 
the parameter ~. Taking this into account, as well as the fact that the dependence (3.1) is 
proposed for the boundary layer on a surface without mass transfer, we shall use (3.1) under 
the condition of replacing the value T w by its analog Two on an impermeable wall. In a first 
approximation, we use Two = Tw/[In (i + b)/b] ~ for this relationship, where b = 2j/cf [18]. 
Then we will have the following modified expression for the equilibrium parameter 

Represented in Figs. 4 and 5 is a comparison between a computation and experimental data 
obtained in [5, 19], respectively. The flow around a porous plate covered compactly by homo- 
geneous spherical roughness elements with radius r = 0.635 mm was investigated in these papers. 
The nature of the roughness elements does not permit determination of the roughness density 
X and use of the correlation dependence [i]. Hence, the height of the equivalent sand rough- 
ness k = 1.25r was used in the computation [12]. It follows from the data in [5, 19] that 
R = --3.5 for a gradient-free flow, and R =--4.1 in the presence of a longitudinal pressure 
gradient for such a selection of the parameter k. 

Represented in Fig. 4 is a comparison of a computation with the results of measuring O 
(open circles) with cf (dark points) in a gradient-free flow with u e = 27.1 m/sec. Tests 
were performed for values j = 0, 0.002, and 0.004 (points 1-3, respectively) for the mass- 
transfer parameters. 

A comparison with experimental data [19] obtained for an accelerating equilibrium flow 
(u~ = 26.4 m/sec, j = 0.0039) is presented in Fig. 5. The results of measuring the integral 
characteristics cf, e, 6" (points 1-3, respectively) and their computed values (dashed curve 
is a computation of cf with ~ = 0.41) are compared in Fig. 5a. We note that good agreement 
between the value of N computed from (3.1) and (3.2) and its experimental value is obtained 
in a computation for both the case presented here with (j = 0.0039, ~ = 0.35) and without 
blowing (j = 0, ~ = 0.38, the pressure gradient was the same as in the tests with blowing). 
A comparison with measurement data for the mean velocity u (points 4) and the turbulent shear 
stress <u'v'> (points 5) on the stream acceleration section (x = 1.07 m, Ue = 33.9 m/sec), 

231 



and also the mean velocity (points 6) on the gradient-free section (x = 1.47 m, u e = 39.1 m/ 
sec) is represented in Fig. 5b. It is seen that agreement is good for both the integral and 
the local parameters. 

The author is grateful to E. G. Zaulichnii for attention to the research, and to O. A. 
Danilov for useful discussion. 
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